

Long-Small (LS) Decay Search Analysis

R. Rameika 07Dec99

Outline

- General Comments on Decay Searches
- LS Analysis Strategy
- Analysis Results
- Next Steps

Decay Search Parameters

A τ decay is characterized by two parameters:

- 1) the length of the parent, $L_{\rm dec}$
- 2) the parent-daughter kink angle, $\theta_{\rm kink}$

These two parameters are correlated:

Decay Search Regions

Region I : $L_{dec} \le 1 \text{ mm}$

Region II: $L_{\text{dec}} \ge 1 \text{ mm}$; $\theta_{\text{kink}} \ge 25 \text{ mrad}$

Region III: $L_{\text{dec}} \ge 1 \text{ mm}$; $\theta_{\text{kink}} \le 25 \text{ mrad}$

Emulsion Modules

Don't forget... there are 3 different configurations of modules...

So... be careful when relating discussion and coding of segment dependent algorithms to physical decay lengths.

Region I (S)

$S \Rightarrow short parent$

- no segments on the parent
- daughter is "linked" to the parent by an impact parameter

Daughter candidates are found by searching the *m*-file for tracks with impact parameters $20\mu \le IP \le 500\mu$

and which do not penetrate to plates upstream of the primary vertex.

Region II (LL)

$LL \Rightarrow long parent, large angle$

- parent and daughter are unique tracks
- daughter is "linked" to the parent by a small impact parameter

Daughter candidates are found by searching the *m-file* for tracks which start downstream of a primary track which stops and has a small impact parameter (?µ) with that primary.

Region III (LS)

$LS \Rightarrow long parent, small angle$

- parent and daughter are merged as a single track
- daughter is "found" by finding a better kink fit than straight track

Daughter candidates are found by searching for kinks in each track which has been labeled as coming from the primary.

LS Search Method

• Limitation :

- Intrinsic angular resolution of tracks created from emulsion track segments.
- Study this using penetrating tracks.

• Step 1

- Use segment coordinates to do a leastsquares fit to get track angles
- Look at distribution of segments about the fitted slopes
- Also determine track slopes simply by averaging the segment slopes.
- Compare the difference between the fit and the average.

Track Segments vs. Fit

LS Search

- Step 2
 - Segment single long tracks into 2 tracks.
 - Loop over all combinations on lengths
 - 1 / n-1
 - 2 / n-2
 - •
 - •
 - n-1 / 1

Segmented tracks

Track angular resolution

Step 3: Determine resolution as a function of the length of the track (i.e. # of segments).

	n
1	n-1
2	n-2
3	n-3

Distribution of σ's

Kink Resolution vs Track Length

(For each track, determine the pair of segments making the maximum kink; plot the angle vs. the length of the 1st segment.)

Next Steps

Code algorithm and establish criteria for selecting candidate kinks.

Using newly created *decay m-files*, select several multi-prong, located events and do a small angle search on each of the primary tracks.

Try matching candidate daughter tracks to the spectrometer tracks.